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Abstract 

In recent years, the use of polymer composites derived from organic resources has significantly 
increased across various industries. This shift is largely driven by environmental concerns and the health 
risks associated with the production and disposal of traditional synthetic fibers. Natural fibers have 
gained popularity as reinforcement materials in polymer matrix composites due to their numerous 
advantages, including low cost, widespread availability, low density, favorable mechanical properties, 
environmental friendliness, high stiffness, and biodegradability. 

In the present study, OBF (organic-based fibers) were treated with a 5% sodium hydroxide solution and 
then incorporated into epoxy resin (ER) as the matrix material. Composites were fabricated using varying 
OBF weight fractions of 3%, 6%, 9%, 12%, and 15% as filler material. The preparation and testing of the 
composites followed ASTM standards. To evaluate the physical and mechanical performance of the 
composites, tests were conducted for water absorption, tensile strength, hardness, impact resistance, 
and flexural strength. 
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Introduction 

The rising concerns about global warming and diminishing petroleum reserves have encouraged 

researchers to explore natural fibers as sustainable bio-fillers in thermosetting and thermoplastic 

polymers. Compared to synthetic fibers, natural fibers offer various benefits, including cost-effectiveness, 

high strength, low density, biodegradability, and greater flexibility during extraction and processing, as 

reported by Sathish and his co-workers [1]. Due to their eco-friendly nature, natural fibers support the 

development of a green economy by enhancing energy efficiency and reducing carbon emissions when 

used in composites. 

However, natural fibers often show poor mechanical performance in composites because of 

incompatibility with polymer matrices. This issue can be addressed through polymer matrix modifications 

or by incorporating additional fillers, which significantly improve the mechanical behavior of the 

composites. Fibers such as okro, flax, ramie, cotton, hemp, kenaf, sisal, bamboo, and jute are now 

commonly used as reinforcements in place of synthetic fibers. 

https://doi.org/10.5281/zenodo.16744812
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Okro (Abelmoschus esculentus), also called Hibiscus esculentus, belongs to the mallow (Malvaceae) 

family, which includes species like hibiscus and cotton. It is a tall-growing, warm-season crop suited to 

diverse soil types and widely cultivated across Asia, Africa, the Caribbean, and the southern America, 

known by various names such as lady’s finger, gumbo, and bhindi its origin is believed to be the Abyssinian 

region, covering parts of Ethiopia, Eritrea, and Sudan. Okro is the only vegetable crop in the Malvaceae 

family with significant applications in the food industry. 

Vegetable fibers have a complex structure due to their hierarchical composition, consisting mainly of 

cellulose along with hemicellulose, lignin, pectin, waxes, and water-soluble substances. Lignin and pectin 

function as natural bonding agents. According Shamsul, and Arifuzzaman [2], okro bast fiber (OBF) 

contains approximately 67.5% cellulose, 15.4% hemicellulose, 7.1% lignin, 3.4% pectin, 3.9% waxes and 

fats, and 2.7% water. 

Arrifulzaman and co-workers showed that increasing the content of OBF in phenol formaldehyde resin 

(PFR) composites improves tensile strength, Young’s modulus, and flexural strength up to an optimal filler 

content of 29% [3]. Beyond this point, excessive fiber reduces mechanical performance. The hydroxyl 

groups in OBF also increase water absorption and contribute to poor bonding with hydrophobic matrices 

like PFR. However, surface treatments such as alkali treatment or bleaching enhance the fiber’s 

compatibility with the matrix and improve the composite’s mechanical properties. 

The overall strength of natural fiber-reinforced composites depends not only on the matrix but also on 

several factors, including fiber orientation, fiber-matrix compatibility, filler content, and aspect ratio. 

Accordingly, this research aims to investigate the impact of okro bast fiber fillers on the mechanical and 

physical properties of epoxy-based composites. 

2. Materials and Method 

Extraction of Fiber  

Okro stems were sourced from a small farm located in Gwarzo Local Government Area of Kano State. The 

fibers were extracted using the water retting technique. The okro bark was stripped into ribbon-like 

bundles and submerged in a water bath. Light pressure was applied to ensure the bark remained fully 

immersed for a period of 10 days, allowing the natural binding substances such as pectin, lignin, cellulose, 

and hemicellulose to break down and soften. 

After the 10-day retting period, the bark was removed and thoroughly washed with clean water to 

separate the pulp from the fibers. The extracted fibers were then shredded and combed to obtain finer 

strands. These were air-dried at room temperature for 15 days. Once dried, the fibers were cut into short 

lengths of approximately 1.5 cm and subsequently treated with a sodium hydroxide solution. These 

treated fibers were then used in the preparation of composite samples. 

Table 2.1. Formulation table of UOBF and TOBF/ER Composites 

S/N Material Source 

1 Okro Bast Fibre Getso, Gwarzo Local Government, kano state 

2 Sodium Hydroxide Steve moor, Kwangila, Zaria 

3 Acetic Acid Steve Moor, Kwangila Zaria 

4 Epoxy Resin, Hardener (Hy-951) Epochem, 18 Adeshina Street, behind holy trinity hospital 

Ikeja, off Obafemi Awolowo Way Ikeja, Lagos State Nigeria. 
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Table 1.2. Source and Machine Models 

S/N Machine Model Source 

1 Flexural Strength Tester 

(Universal Testing 

Machine 

M500-50CT equip with 

win test analysis version 

4.1.6 

Dept of mechanical engineering, Bayero 

University Kano (BUK) 

2 Tensile Testing Machine Instron 3366 Instron 

Co,Ltd 

Dept of Polymer and Textile 

Engineering, Ahmadu Bello University 

Zaria. (ABU) 

3 Impact Testing Machine: 

Resil Impactor 

Ceast 363 Dept of Metallurgical and Material 

Engineering, Ahmadu Bello University 

Zaria (ABU) 

4 Hardness Testing 

Machine (Vickers 

Hardness) 

MVI-PC, Mh-v 

CM07/2012-1329 

Shell Chair Laboratory. Dept of 

Mechanical Engineering, Ahmadu Bello 

University Zaria (ABU) 

 

Alkaline Treatment of Okro Fiber 

Treatment of Okro Bast Fiber is 5% sodium hydroxide solution was prepared by dissolving sodium 

hydroxide in distilled water. The okro fibers were then immersed in this solution and treated at a 

temperature of 60°C for two hours with continuous stirring. After the treatment, the fibers were taken 

out and thoroughly rinsed with water. To neutralize any remaining alkali, the fibers were soaked in a 1% 

acetic acid solution, followed by a final rinse with distilled water. The treated fibers were then left to dry 

at room temperature. 

Table 2.1. Formulation table of UOBF and TOBF/ER Composites 

S/N UOBF (wt%) TOBF (wt%) ER (wt%) Total 

1 0 0 100 100 

2 3 3 97 100 

3 6 6 96 100 

4 9 9 91 100 

5 12 12 88 100 

6 15 15 85 100 

UOBF= untreated okro bast fibre, TOBF= treated okro bast fibre, ER= epoxy resin 

2.3. Fabrication of Okro Bast Fiber Composites  

Short okro bast fibers were utilized in the preparation of the composites using the hand layup method. 

This process involved manually mixing different weight percentages of okro bast fiber (OBF) fillers 3, 6, 9, 

12, and 15wt% with epoxy resin to create uniform blends. The blending was done by hand stirring for 10 

to 15 minutes, after which a hardener was added. The resin-to-hardener ratio used was 2:1. Once the 

filler was thoroughly mixed, the blend was poured into a glass mold (200 mm × 100 mm × 4 mm) lined 

with aluminum foil to act as a release agent. The mixture was left to cure at room temperature for 24 

hours before being demolded. The cured composites were then cut into specific shapes for testing 

rectangular strips for general testing (Impact, hardness and flexural test) and dog-bone shapes for tensile 

testing. 
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2.4. Characterization of the Composites  

The characterization of the composites was performed in line with ASTM standards for testing of materials 

the composites were conditioned at room temperature and then subjected to various test 

2.4.1. Physical Property   

Water absorption was carried out according to ASTM D570. The samples were conditioned in an oven at 

45 °C for 72 hours. Then, placed inside desiccators for 24 hours and finally weighed (W1) using a metler 

weighing balance. The weighed samples were then immersed in a plastic container containing water for 

24 hours. The samples were removed from the water, wiped with a clean cloth to eliminate moisture, 

then re-weighed (W2) and the process continues for thirty days.  

2.4.2. Mechanical Properties  

The tensile test was carried out using a tensile properties tester (YG026D Multifunctional Electronic Fabric 

Strength Machine) according to ASTM D638 with a maximum force of 10 KN. The sample's dimensions 

were 100 x15 x 4 (mm) in length, width, and thickness respectively. A cross– head speed of 2 mm/min 

was used. The test specimens were held in the grips of the testing machine and tightened evenly and 

firmly to prevent any slippage as the test commenced. The resistance and elongation of the specimens 

were detected and recorded by the load cell until a failure or rupture occurred. From the tensile test, 

tensile parameters (tensile strength (breaking point), elongation at break, and tensile modulus) were 

determined and recorded.  

2.4.3. Izod Impact Test  

The Impact test is usually carried out to determine the energy needed to initiate fracture and continue 

until the specimen is broken at a certain point in time. It is a test that determines the resistance of the 

material to impact from a moving pendulum. The Izod test is used to identify the overall toughness of a 

material. The procedure involves specimens made with a notch which produces stress and concentration 

that increases the possibility of brittle failure. The notch in the specimen reduces or minimizes plastic 

deformation and direct fracture of the part behind the notch. The specimen is clamped into the fixture 

with the notched side facing the edge of the pendulum. The pendulum is allowed to hit the specimen. The 

Izod impact test was performed as per ASTM D256 with a standard specimen size of 64 mm x 1.27 mm x 

4 mm. Impact strength is measured by dividing impact energy in joule by the thickness of the specimen. 

The greater number indicates the toughness of the material.  

2.4.4. Hardness Testing (Vickers Hardness) 

Vickers Hardness testing machine was utilized to determine the hardness of composites.  The hardness 

testing procedure followed the ASTM 2240 standard, providing guidelines for the Vickers Hardness test 

Samples with parallel flat surfaces were used for the hardness testing. The sample (30x30mm) was placed 

on the anvil (or avail) of the Vickers hardness testing machine The dial on the apparatus was adjusted to 

zero under a minor load of 10 kg the major load of 60 kgf (kilogram-force) was immediately applied by 

releasing the trip lever. After 15 seconds, the major load was removed. The specimen was allowed to 

recover for 15 seconds the hardness test was repeated three times to ensure consistency and reliability 

of the results. An average value of each test result was calculated based on the three repetitions.  
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2.4.5. Flexural Strength 

The flexural test was carried out in accordance with ASTM D790 (2010) using a Universal Testing Machine. 

This test evaluates a material's resistance to bending by determining its flexural strength and modulus. A 

three-point bending setup was used, where the specimen was placed on two supports and a load was 

applied at the center. The test measures the force required to bend the sample under these conditions. 

Each specimen was tested five times to ensure accuracy, and the flexural strength was calculated using 

the formula provided in the corresponding equation 1.  

𝐹 =
3𝑃𝐿

2𝑏𝑑2
 

Flexural strength = F = Maximum load applied on the test specimen  

L= is the span length of the sample (mm) (gauge length); 

P = the load applied (N) 

b = the width of the specimen (mm) 

d = Thickness of specimen tested (mm) respectively 

3. Results and Discussion 

3.1. Physical Properties 

Water absorption is one of the physical parameters carryout to find out the quantity of water absorbed 

by the composites; water absorption test was carried out to find out the quantity of water absorbed for 

30(thirty) days. Water absorption depends on certain parameters such as matrix, fibre content/filler 

loading, method of fabrication and environment/ weather condition. Water absorption of treated and 

untreated OBF/ER composites as shown in figure3.1. 

 

Figure 3.1. Water Absorption of Untreated Okro Bast Fibre/Epoxy Resin Composites 
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Figure 3.2. Water Absorption of Treated Okro Bast Fibre/Epoxy Resin Composites 

Water absorption by the fiber is likely caused by the presence of hydroxyl groups, which attract water 

molecules through hydrogen bonding. This occurs because natural fibers are hydrophilic, in contrast to 

polymers, which are generally hydrophobic. Both untreated and alkali-treated composites initially showed 

an increase in water absorption within the first 48 hours, eventually reaching a saturation point between 

24 to 30 days. Maximum water uptake was recorded as 3.72% for untreated composites and 3.37% for 

alkali-treated composites at a 15% fiber weight fraction. 

This pattern of water absorption follows Fickian diffusion behavior, where the rate of water penetration 
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achieved. The hand lay-up method often introduces imperfections or voids into the material, which can 

facilitate water ingress. Okro bast fiber, being a natural and hydrophilic material, contains cellulose with 

hydroxyl groups that contribute to its water-absorbing nature. 

The reduced water absorption observed in the alkali-treated fiber composites is attributed to decreased 

hydrophilicity caused by the treatment. Sodium hydroxide (NaOH) treatment modifies the fiber surface 

by removing or altering hydrophilic functional groups like hydroxyl (-OH), which decreases the fibers’ 
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formaldehyde resin composites and found that treated composites with 30 wt.% filler showed lower 

water absorption compared to untreated ones [3]. This was attributed to improved fiber wettability within 

the polymer matrix, which limited water accumulation. 

3.2. Mechanical Property  

Tensile strength of a material is the maximum amount of stress a material can withstands before failure. 

Five (5) specimens were examined for each loading of the reinforcement as presented in figure 3.3. 
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Figure 3.3. Tensile Strength of Untreated and Treated OBF/ER Composites 
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observed particularly at 12% and 15% filler loadings likely due to weaker adhesion at the fibre-matrix 

interface. This poor bonding created vulnerable points within the composites, reducing their ability to 

withstand tensile forces. 

Higher filler loading can weaken the bond between the matrix and filler, leading to voids and reduced 

tensile strength, as reported by Tezara and co-workers [9] and supported by Ayyavoo and his research 

partners [10] and Sudhakar and his research partners [11]. 

3.3. Tensile Modulus  

Tensile modulus, or Young’s modulus, measures a material’s stiffness and resistance to deformation. A 

higher modulus indicates increased rigidity and reduced ductility, often due to stiffening effects within 

the composite as reported by Bello and co-workers [5]. 

 

Figure 3.4. Tensile modulus of Untreated and Treated OBF/ER composites 

From figure 4 above, the results indicated that the tensile modulus of treated okro bast fibre/epoxy 

(TOBF/ER) composites increased with filler loading, peaking at 9% with a maximum value of 6.35 GPA. 
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variations in modulus across different studies could be due to differences in fibre and matrix weight 

fractions, as well as the fibre types used. Saira and his co-workers [13] found that alkali treatment 

enhances both tensile strength and modulus in hemp fibres, attributing this to the partial removal of lignin 

and hemicellulose, which increases the crystallinity and rigidity of the fibres. The removal of these 

components enables the microfibrils to relax and realign along the fiber's main axis, forming a stiffer 

structure. Increasing NaOH concentration further eliminates lignin and hemicellulose, creating more 

space for microfibril rearrangement. In untreated OBF, the presence of hemicellulose, lignin, and other 

impurities hinders fibre-matrix adhesion, leading to weaker bonding and reduced mechanical 

performance. 

3.4. Impact Strength 

The impact strength of a material is the capacity of the composites material to resist to shock during 

deformation. The formed composites have moderate impact strength after the addition of the OBF into 

the polymeric matrix. 

 

 

Figure3.5. Impact Strength of Untreated and Treated OBF/ER Composites 
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3.5. Hardness Test 

Hardness is the measure of wear resistance of any materials to surface indentation, which also serve as a 

function of stress required to produce a specific type of deformation and values obtain are used to 

evaluate or estimate the mechanical strength of each composite. 

 

Figure 3.6. Hardness of Untreated and Treated OBF/ER Composites 

Figures 3.6 show the hardness values of treated and untreated OBF/UPR and OBF/Epoxy composites. It 

was observed that the hardness value of all the treated and untreated composites of OBF/UPR and 
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3.6. Flexural Strength 

The results indicate that epoxy composites reinforced with sodium hydroxide-treated okro bast fibre 

exhibit better flexural properties than those made with untreated fibres. This suggests that the alkali 

treatment enhanced the fibres adhesion characteristics, leading to improved wettability and stronger 

bonding between the fibre and the polymer matrix. 

 

Figure 3.7. Flexural Strength of Untreated and Treated OBF/ER Composites. 

The flexural strength of treated okro bast fibre (TOBF)/epoxy composites increased with rising fibre 

content, peaking at 78.9 MPa at 9 wt% filler loading. This improvement is likely due to enhanced interfacial 

bonding, which facilitates efficient stress transfer between fibre and matrix. Surface modification from 

alkali treatment may also contribute by roughening the fibre surface, promoting better mechanical 

interlocking. Similar trends were observed by Sugiman and his co-workers [18], Nadendla [19], and Silas 

& Timothy [20], who reported increased flexural strength and modulus with fibre treatment and filler 

loading. However, beyond 9, at 12 and 15w% filler loading, flexural strength declined likely due to weak 

bonding and poor stress transfer, leading to voids and structural weaknesses. Ojha and co-workers also 

observed a similar decline in strength at higher filler loadings [21]. 

4. Conclusion 

Composites made from okro bast fibre (OBF) and epoxy resin were fabricated using the hand lay-up 

method, with a focus on both untreated and alkaline-treated fibres. The results indicated that 

incorporating OBF improved the mechanical performance of the composites. Hardness increased with 

higher filler loading for both treated and untreated samples, while water absorption was significantly 

lower in treated composites. The treated OBF/ER composites showed peak tensile, flexural, and impact 

strength at 9wt% filler loading. These composites are suitable for non-structural applications such as 

ceiling and partition boards. Overall, the study highlights the potential of converting agricultural waste 

like okro bast fibre into valuable, functional materials. 
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